The 3 Vital Keys That Will Make Autonomous Shipping a Reality

This week is London’s International Shipping Week bringing together organisations across the global shipping industry –  regulators, charterers, ship owners, ship brokers, insurers, port operators and many more.

To celebrate the occasion ASV Global (ASV), the world leading developer of autonomous vessel technology, explores what it’ll take to make autonomous shipping a reality. Autonomous shipping has become a topic of discussion over the past year with large industry players stating their interest in developing this technology. ASV has deployed its technology onto more than 80 small vessels (<15m) but believes that this technology is scalable. According to the company’s expert autonomous systems developers, there are 3 elements that hold the key to making autonomous shipping a reality. Achieving fully autonomous shipping is critically dependant on the progress of these 3 keys: sensor fusion, control algorithms and communications.

As the marine industry adopts maritime autonomous systems (MAS) across different sectors including oil and gas, science and survey, military and security domains, it seems only logical that the next step is to revolutionise the landscape of ship design and operations through autonomous shipping.

The first key is sensing. Sensor technology has been around for a long time and can be found in many forms of autonomous vehicle operation, most notably road vehicles where competing developers have prioritised differing technologies. However, whilst a self-driving car and a self-driving boat might ostensibly appear to have the same sensing needs, the challenges and requirements are in fact completely different. ASV has been at the forefront of research into exploring what actually works on the water and where challenges still remain. For example, ASV’s advanced autonomy project has explored the integration of radar, AIS, GPS and 360-degree daylight and thermal cameras with deep-learning vessel classification and sea state detection to provide the vessel and its remote operators with an accurate perspective of its environment and surroundings at all times and in all conditions.

Control is the second key area which brings the development of navigation, optimisation and collision avoidance software. ASVs algorithms allow the system to react to other marine traffic in accordance with internationally recognised maritime rules and regulations, with the autonomous vessel behaving entirely as would be expected from a standard manned boat. A ship’s ability to monitor its own health, recognise what is around it and make decisions based on that information is vital to the development of autonomous operations.

Whilst developing a “collision avoidance” solution in simulation in relatively straightforward, the engineering practicalities from moving from bench to real world are a significant and often underappreciated as a challenge. Moreover, in the maritime world this is an even larger step than in most other domains. It is this real world expertise and on the water track record where ASV demonstrably lead the field. In large part, this is through working with Dstl since 2013, on a fully autonomous navigation system to enable USVs to operate safely at low and high speeds.  The primary vessel used for that programme is a converted Ice Marine “Bladerunner” (Dstl’s Maritime Autonomy Surface Testbed, or MAST), a 10m powerboat capable of speeds in excess of 60 knots. While the nature of the vessel has allowed ASV to develop autonomous behaviours for a small, fast boat, the next natural step is to scale the system up for use with larger vessels.

Dstl ‘MAST’ vessel

Despite the significant advances made in technology development, autonomous vessels are still somewhat reliant upon human input from land or a local remote station.  In some small areas, this reliance remains a technical one, however very soon it will primarily be regulatory – only reliance. For a least the short and medium term, regulators are going to want to maintain human supervision and have oversight in the loop for accountability and legal responsibility. As such, connectivity between the remote operator and the vessel is of paramount importance and is the third key to unlock.  Communications links over increasingly large distances need to be accurate, scalable and supported by multiple links to create redundancy and minimise risk. Sufficient reliability and bandwidth capacity for sensor monitoring has to be consistently proven in order to be fully adopted into the wider market.

Future development of ASV’s advanced autonomy project will explore how to combine existing communication technologies in an optimum way for autonomous ship control.  This will include significantly developing over-the-horizon capabilities in order to conduct more operations akin to a recent survey project undertaken with our C-Enduro vehicle, which was operated off the coast of Scotland from ASV’s Mission Control Centre in Portchester via a satellite link over 12 continuous days and nights. The future goals are of course to integrate the advanced autonomy system into bridge systems on shipping vessels, with upcoming work to experiment with a proof of concept bridge aid which is to be tested on a passenger ferry.

ASV Remote Operator controlling the C-Enduro vessel ‘Thomas’ from Mission Control

If you want to unlock the potential of autonomous shipping for your business, you need to make sure you have these keys in your hand, and only ASV can supply all three.

Go Back

Contact Us

Europe / Asia / Oceania / South America / Africa     +44 2392 382573

North America     +1 337 422 4411

By contacting us you are confirming that you have read and agreed to our privacy policy and understand that your details will be used to contact you. Your details will not be shared with third parties.

Stay in touch

Stay up to date with L3Harris ASV by joining our mailing list or following us on social media.